翻訳と辞書 |
Linear partial information : ウィキペディア英語版 | Linear partial information Linear partial information (LPI) is a method of making decisions based on insufficient or fuzzy information. LPI was introduced in 1970 by Polish - Swiss mathematician Edward Kofler (1911–2007) to simplify decision processes. Comparing to other methods the LPI-fuzziness is algorithmically simple and particularly in decision making, more practically oriented. Instead of an indicator function the decision maker linearizes any fuzziness by establishing of linear restrictions for fuzzy probability distributions or normalized weights. In the LPI-procedure the decision maker linearizes any fuzziness instead of applying a membership function. This can be done by establishing stochastic and non-stochastic LPI-relations. A mixed stochastic and non-stochastic fuzzification is often a basis for the LPI-procedure. By using the LPI-methods any fuzziness in any decision situation can be considered on the base of the linear fuzzy logic. == Definition == Any Stochastic Partial Information SPI(p), which can be considered as a solution of a linear inequality system, is called Linear Partial Information LPI(p) about probability p. It can be considered as an LPI-fuzzification of the probability p corresponding to the concepts of linear fuzzy logic.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Linear partial information」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|